Distinctiveness, typicality, and recollective experience in face recognition: A principal components analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminant Analysis of Principal Components for Face Recognition

In this paper we describe a face recognition method based on PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via PCA, second we use LDA to obtain a best linear clas-siier. The basic idea of combining PCA and LDA is to improve the generalization capability ...

متن کامل

Face recognition using mixtures of principal components

We introduce an efficient statistical modeling technique called Mixture of Principal Components (MPC). This model is a linear extension to the traditional Principal Component Analysis (PCA) and uses a mixture of eigenspaces to capture data variations. We use the model to capture face appearance variations due to pose and lighting changes. We show that this more efficient modeling leads to impro...

متن کامل

Face Recognition Using Eigen face Coefficients and Principal Component Analysis

Face Recognition is a field of multidimensional applications. A lot of work has been done, extensively on the most of details related to face recognition. This idea of face recognition using PCA is one of them. In this paper the PCA features for Feature extraction are used and matching is done for the face under consideration with the test image using Eigen face coefficients. The crux of the wo...

متن کامل

Diagonal principal component analysis for face recognition

In this paper, a novel subspace method called diagonal principal component analysis (DiaPCA) is proposed for face recognition. In contrast to standard PCA, DiaPCA directly seeks the optimal projective vectors from diagonal face images without image-to-vector transformation. While in contrast to 2DPCA, DiaPCA reserves the correlations between variations of rows and those of columns of images. Ex...

متن کامل

Face Recognition Based on Principal Component Analysis

The purpose of the proposed research work is to develop a computer system that can recognize a person by comparing the characteristics of face to those of known individuals. The main focus is on frontal two dimensional images that are taken in a controlled environment i.e. the illumination and the background will be constant. All the other methods of person’s identification and verification lik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Psychonomic Bulletin & Review

سال: 2005

ISSN: 1069-9384,1531-5320

DOI: 10.3758/bf03206439